
The Problem of the Thirteen Spheres

One can easily arrange 12 unit spheres all touching a central
one:

For example, touching the central one at the 12 vertices of
an inscribing regular icosahedron.
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Note: This arrangement is very untight.

4 sin
tan−1 2

2
= 2.102924 . . .

In fact, there is another arrangement of 12 touching neigh-
bors, called the f.c.c. configuration:

There are six “big holes” in this configuration, as indicated
in the figure.
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The Problem of the 13 spheres:

“Is it possible to create a hole big enough
to allow an additional 13th touching neighbor?”

There was a recorded discussion between David Gregory and
Isaac Newton in 1694. It was believed that they had the
following viewpoints:

Newton: “12 should be the maximal.”

Gregory: “13 might be possible.”

Also known as Newton’s Problem.

...turns out to be a challenging problem.
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Intuitively, tightest local arrangement of 3 touching neigh-
bors should look like:
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The three touching points on the central sphere will form a
π
3 -equilateral spherical triangle with area △π

3
, where:

△π
3
= 3α− π, α = cos−1 1

3
.
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Euler formula: v − e+ f = 2. For triangulations, 3f = 2e.

The sphere will be subdivided into f = 2v − 4 triangles.

Direct calculations:

12 pts : 4π − 20△π
3
= 1.5406 . . .

13 pts : 4π − 22△π
3
= 0.4380 . . .

14 pts : 4π − 24△π
3
= −0.6644 . . .

So, in terms of total area accounting (with certain separation
requirement),

“13 touching neighbors might be possible”.
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Answer: 13 is impossible.

1694 recorded discussion

1874-5 some (incorrect) proofs

1953 first (2) correct proofs by
Schütte & van der Waerden

1956 another proof sketched by Leech
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Recently,

1993 W.Y. Hsiang

1998 M. Aigner & G. Ziegler

2003 K. Böröczky

2004 K. Anstreicher

2006 O. Musin

2007 H. Maehara
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Roughly speaking, because of the inequality

5α < 2π < 6α, α = cos−1 1

3

ℓ > π
3

α

α
α
α

it is impossible to have a tight local arrangement.

i.e. need to use up some additional area when piecing the
triangles together.
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The proof by van der Waerden:

1. construction of irreducible graph with edges of equal
lengths.

2. local estimation on “angle-excesses” of a polygon (or a
collection of polygons around a vertex).

3. estimates in (2.) contradict with global estimation on
angle-excesses.

• the construction of “irreducible graph” is non-trivial.

• required to perform deformations on a “hypothetical”
configuration.
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The proof “sketched” by Leech:

1. construction of a graph just by specific choices on edge-
length bounds.

2. local estimation on area-excess for individual polygons.

3. possible combinatorial types satisfying estimates in (2.)
and total area-excess estimate actually can never exist.

• lower bound estimate in (2.) turns out to be non-trivial.

• Leech: “certain details which are tedious rather than dif-
ficult being omitted ”.

• Leech:“I know of no better proof of this than sheer trial”.
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The proof by Hsiang:

1. graph obtained by radial projection of the Euclidean
convex hull of the vertices.

2. lower bound area estimations of a collection of polygons
around a vertex.

3. 13 vertices ⇒ the existence of vertex with degree ≥ 6.

4. the area-excess of a π
3 -saturated{

6△-star
7△-star

> total area-excess,

contradiction.

• the lower bound estimate in (2.) is highly non-trivial.
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A qualitative comparison:

proof the graph area combinatorial
by constructed estimates analysis

SW sophisicated simple simple
Leech simple, a bit a bit

artificial involved involved
Hsiang simple, rather trivial

natural involved
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Upper bound estimations on δ13:

δ13: maximal spherical separation for placing 13 points on
the unit sphere. (π3 = 1.04719 . . .)

SW 1.04318

Leech 1.04635

Hsiang 1.04455
(1.02746)

Conjecture: δ13 = 0.99722359 . . .

claimed to be Yes by O. Musin and A. Tarasov, 2015 arXiv
involves computer elimination of almost 100 million graphs.
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Spherical Geometry (on unit sphere):

Lemma 1: (Area formula)

△ = ̸ A+ ̸ B + ̸ C − π,

or tan
△
2

=
D

u

.

where D = det(a,b, c) > 0, u = 1 + cos a+ cos b+ cos c.

By product formula of determinant, we have:

D2 = 1 + 2 cos a cos b cos c− cos2 a− cos2 b− cos2 c.
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Lemma 2: Let a, b, c, d be the vertices of a quadrilateral,
and let

−−→
OV 1 and

−−→
OV 2 be given by:

−−→
OV1 =

1

a× b · c
{a× c+ b× c+ c× a},

−−→
OV2 =

1

a× c · d
{a× c+ c× d+ d× a}.

Then:
−−→
V1V2 =

d

dt

a× c

|a× c|
,

d

dB
=

−−→
V2V1 · b.

Corollary: A quadrilateral with four given side-lengths at-
tains its maximal area when it is cocircular. Shearing de-
formation further away from cocircularity is monotonic area-
decreasing.
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Lemma 3 (Lexell’s Theorem): Let△ABC and△ABC ′ have
the same oriented area. Then C, C ′, antipodal points of A
and B are cocircular.

Corollary: Cluster of isosceles triangles with a fixed sum
of central angles, more lopsided distribution ⇒ smaller total
area.
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