The Problem of the Thirteen Spheres

One can easily arrange 12 unit spheres all touching a central one:

For example, touching the central one at the 12 vertices of an inscribing regular icosahedron.

Note: This arrangement is very untight.

$$
4 \sin \frac{\tan ^{-1} 2}{2}=2.102924 \ldots
$$

In fact, there is another arrangement of 12 touching neighbors, called the f.c.c. configuration:

There are six "big holes" in this configuration, as indicated in the figure.

The Problem of the 13 spheres:
"Is it possible to create a hole big enough to allow an additional 13th touching neighbor?"

There was a recorded discussion between David Gregory and Isaac Newton in 1694. It was believed that they had the following viewpoints:

Newton: "12 should be the maximal."
Gregory:"13 might be possible."
Also known as Newton's Problem.
...turns out to be a challenging problem.

Intuitively, tightest local arrangement of 3 touching neighbors should look like:

The three touching points on the central sphere will form a $\frac{\pi}{3}$-equilateral spherical triangle with area $\triangle \frac{\pi}{3}$, where:

$$
\triangle_{\frac{\pi}{3}}=3 \alpha-\pi, \quad \alpha=\cos ^{-1} \frac{1}{3} .
$$

Euler formula: $v-e+f=2$. For triangulations, $3 f=2 e$.
The sphere will be subdivided into $f=2 v-4$ triangles.
Direct calculations:

$$
\begin{array}{ll}
12 \mathrm{pts}: & 4 \pi-20 \triangle_{\frac{\pi}{3}}=1.5406 \ldots \\
13 \mathrm{pts}: & 4 \pi-22 \triangle_{\frac{\pi}{3}}=0.4380 \ldots \\
14 \mathrm{pts}: & 4 \pi-24 \triangle_{\frac{\pi}{3}}=-0.6644 \ldots
\end{array}
$$

So, in terms of total area accounting (with certain separation requirement),
"13 touching neighbors might be possible".

Answer: 13 is impossible.
1694 recorded discussion

1874-5 some (incorrect) proofs
1953 first (2) correct proofs by Schütte \& van der Waerden

1956 another proof sketched by Leech

Recently,
1993 W.Y. Hsiang

1998 M. Aigner \& G. Ziegler
2003 K. Böröczky
2004 K. Anstreicher
2006 O. Musin

2007 H. Maehara

Roughly speaking, because of the inequality

$$
5 \alpha<2 \pi<6 \alpha, \quad \alpha=\cos ^{-1} \frac{1}{3}
$$

it is impossible to have a tight local arrangement.
i.e. need to use up some additional area when piecing the triangles together.

The proof by van der Waerden:

1. construction of irreducible graph with edges of equal lengths.
2. local estimation on "angle-excesses" of a polygon (or a collection of polygons around a vertex).
3. estimates in (2.) contradict with global estimation on angle-excesses.

- the construction of "irreducible graph" is non-trivial.
- required to perform deformations on a "hypothetical" configuration.

The proof "sketched" by Leech:

1. construction of a graph just by specific choices on edgelength bounds.
2. local estimation on area-excess for individual polygons.
3. possible combinatorial types satisfying estimates in (2.) and total area-excess estimate actually can never exist.

- lower bound estimate in (2.) turns out to be non-trivial.
- Leech: "certain details which are tedious rather than difficult being omitted".
- Leech:"I know of no better proof of this than sheer trial".

The proof by Hsiang:

1. graph obtained by radial projection of the Euclidean convex hull of the vertices.
2. lower bound area estimations of a collection of polygons around a vertex.
3. 13 vertices \Rightarrow the existence of vertex with degree ≥ 6.
4. the area-excess of a $\frac{\pi}{3}$-saturated
$\left\{\begin{array}{l}6 \triangle \text {-star } \\ 7 \triangle \text {-star }\end{array}>\right.$ total area-excess, contradiction.

- the lower bound estimate in (2.) is highly non-trivial.

A qualitative comparison:

proof by	the graph constructed	area estimates	combinatorial analysis
SW	sophisicated	simple	simple
Leech	simple, artificial	a bit involved	a bit involved
Hsiang	simple, natural	rather involved	trivial

Upper bound estimations on δ_{13} :

δ_{13} : maximal spherical separation for placing 13 points on the unit sphere. $\left(\frac{\pi}{3}=1.04719 \ldots\right)$

SW	1.04318
Leech	1.04635
Hsiang	1.04455
	(1.02746)

Conjecture: $\delta_{13}=0.99722359 \ldots$
claimed to be Yes by O. Musin and A. Tarasov, 2015 arXiv involves computer elimination of almost 100 million graphs.

Spherical Geometry (on unit sphere):

Lemma 1: (Area formula)

$$
\begin{aligned}
& \triangle=\angle A+\angle B+\angle C-\pi, \\
& \text { or } \tan \frac{\triangle}{2}=\frac{D}{u}
\end{aligned}
$$

where $D=\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})>0, u=1+\cos a+\cos b+\cos c$.
By product formula of determinant, we have:

$$
D^{2}=1+2 \cos a \cos b \cos c-\cos ^{2} a-\cos ^{2} b-\cos ^{2} c
$$

Lemma 2: Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ be the vertices of a quadrilateral, and let $\overrightarrow{O V}_{1}$ and $\overrightarrow{O V}_{2}$ be given by:

$$
\begin{aligned}
& \overrightarrow{O V_{1}}=\frac{1}{\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}}\{\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}\} \\
& \overrightarrow{O V_{2}}=\frac{1}{\mathbf{a} \times \mathbf{c} \cdot \mathbf{d}}\{\mathbf{a} \times \mathbf{c}+\mathbf{c} \times \mathbf{d}+\mathbf{d} \times \mathbf{a}\}
\end{aligned}
$$

Then:

$$
\overrightarrow{V_{1} V_{2}}=\frac{d \square}{d t} \frac{\mathbf{a} \times \mathbf{c}}{|\mathbf{a} \times \mathbf{c}|}, \quad \frac{d \square}{d B}=\overrightarrow{V_{2} V_{1}} \cdot \mathbf{b} .
$$

Corollary: A quadrilateral with four given side-lengths attains its maximal area when it is cocircular. Shearing deformation further away from cocircularity is monotonic areadecreasing.

Lemma 3 (Lexell's Theorem): Let $\triangle A B C$ and $\triangle A B C^{\prime}$ have the same oriented area. Then C, C^{\prime}, antipodal points of A and B are cocircular.

Corollary: Cluster of isosceles triangles with a fixed sum of central angles, more lopsided distribution \Rightarrow smaller total area.

